Mesh Scripting/de: Difference between revisions

From FreeCAD Documentation
(Created page with "=== Modellieren === Um regelmäßige Geometrien zu erstellen, können Sie das Python-Skript BuildRegularGeoms.py verwenden.")
(Updating to match new version of source page)
 
(68 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<languages/>
=== Einführung ===

{{TOCright}}

==Einführung==

Um Zugriff auf das Modul {{incode|Mesh}} zu erhalten, musst du es zuerst importieren:


{{Code|code=
Zunächst einmal müssen Sie das Mesh-Modul importieren:
<syntaxhighlight>
import Mesh
import Mesh
}}
</syntaxhighlight>
Danach haben Sie Zugriff auf das Mesh-Modul und die Mesh-Klasse, die die Funktionen des FreeCAD C++ Mesh-Kernel erleichtern.


==Erstellung==
=== Erstellen und Laden ===


Um ein leeres Mesh-Objekt zu erstellen, benutzen Sie einfach den Standard-Konstruktor:
Um ein leeres Netz Objekt zu erstellen, benutze einfach den Standard Konstruktor:


{{Code|code=
<syntaxhighlight>
mesh = Mesh.Mesh()
mesh = Mesh.Mesh()
}}
</syntaxhighlight>


Sie können auch ein Objekt aus einer Datei erstellen
Du kannst auch ein Objekt aus einer Datei erstellen:


{{Code|code=
<syntaxhighlight>
mesh = Mesh.Mesh('D:/temp/Something.stl')
mesh = Mesh.Mesh("D:/temp/Something.stl")
}}
</syntaxhighlight>


Oder erstelle es aus einer Reihe von durch ihre Eckpunkte beschriebenen Dreiecken:
(Eine Liste der kompatiblen Dateitypen finden Sie unter 'Meshes' [[Feature_list#IO|hier]].)


{{Code|code=
Oder erstellen Sie es aus einer Reihe von durch ihre Eckpunkte beschriebenen Dreiecken:
triangles = [

<syntaxhighlight>
planarMesh = [
# triangle 1
# triangle 1
[-0.5000,-0.5000,0.0000],[0.5000,0.5000,0.0000],[-0.5000,0.5000,0.0000],
[-0.5000, -0.5000, 0.0000], [0.5000, 0.5000, 0.0000], [-0.5000, 0.5000, 0.0000],
#triangle 2
#triangle 2
[-0.5000,-0.5000,0.0000],[0.5000,-0.5000,0.0000],[0.5000,0.5000,0.0000],
[-0.5000, -0.5000, 0.0000], [0.5000, -0.5000, 0.0000], [0.5000, 0.5000, 0.0000],
]
]
planarMeshObject = Mesh.Mesh(planarMesh)
meshObject = Mesh.Mesh(triangles)
Mesh.show(planarMeshObject)
Mesh.show(meshObject)
}}
</syntaxhighlight>


Der Mesh-Kernel kümmert sich um die Schaffung einer topologischen richtigen Datenstruktur, durch Sortieren zusammenfallender Punkte und Kanten.
Der Netz-Kernel kümmert sich um die Schaffung einer topologisch richtigen Datenstruktur, durch Sortieren deckungsgleicher Punkte und Kanten.
{{Top}}
==Modellieren==


Um regelmäßige Geometrien zu erstellen, kannst Du eine der {{incode|create*()}} Methoden verwenden. Ein Torus kann zum Beispiel wie folgt erstellt werden:
Später werden Sie sehen, wie Sie Netzdaten testen und untersuchen können.


{{Code|code=
=== Modellieren ===
m = Mesh.createTorus(8.0, 2.0, 50)
Mesh.show(m)
}}


Die ersten beiden Parameter definieren die Radien des Torus und der dritte Parameter ist ein Teilabtastfaktor dafür, wie viele Dreiecke erzeugt werden. Je höher dieser Wert, desto glatter das Netz.
Um regelmäßige Geometrien zu erstellen, können Sie das Python-Skript BuildRegularGeoms.py verwenden.


Das {{incode|Netz}} Modul bietet auch drei boolesche Methoden: {{incode|vereinigen()}}, {{incode|kreuzung()}} und {{incode|differenz()}}:
<syntaxhighlight>
import BuildRegularGeoms
</syntaxhighlight>


{{Code|code=
This script provides methods to define simple rotation bodies like spheres, ellipsoids, cylinders, toroids and cones. And it also has a method to create a simple cube.
To create a toroid, for instance, can be done as follows:

<syntaxhighlight>
t = BuildRegularGeoms.Toroid(8.0, 2.0, 50) # list with several thousands triangles
m = Mesh.Mesh(t)
</syntaxhighlight>

The first two parameters define the radiuses of the toroid and the third parameter is a sub-sampling factor for how many triangles are created. The higher this value the smoother and the lower the coarser the body is.
The Mesh class provides a set of boolean functions that can be used for modeling purposes. It provides union, intersection and difference of two mesh objects.

<syntaxhighlight>
m1, m2 # are the input mesh objects
m1, m2 # are the input mesh objects
m3 = Mesh.Mesh(m1) # create a copy of m1
m3 = Mesh.Mesh(m1) # create a copy of m1
Line 69: Line 63:
m6 = Mesh.Mesh(m2)
m6 = Mesh.Mesh(m2)
m6.difference(m1) # the difference of m2 and m1, usually the result is different to m5
m6.difference(m1) # the difference of m2 and m1, usually the result is different to m5
}}
</syntaxhighlight>


Hier ist ein Beispiel, das eine Pipe mit der Methode {{incode|difference()}} erstellt:
Finally, a full example that computes the intersection between a sphere and a cylinder that intersects the sphere.


{{Code|code=
<syntaxhighlight>
import Mesh, BuildRegularGeoms
import FreeCAD, Mesh
sphere = Mesh.Mesh( BuildRegularGeoms.Sphere(5.0, 50) )
cylA = Mesh.createCylinder(2.0, 10.0, True, 1.0, 36)
cylinder = Mesh.Mesh( BuildRegularGeoms.Cylinder(2.0, 10.0, True, 1.0, 50) )
cylB = Mesh.createCylinder(1.0, 12.0, True, 1.0, 36)
cylB.Placement.Base = (FreeCAD.Vector(-1, 0, 0)) # move cylB to avoid co-planar faces
diff = sphere
pipe = cylA
diff = diff.difference(cylinder)
pipe = pipe.difference(cylB)
d = FreeCAD.newDocument()
pipe.flipNormals() # somehow required
d.addObject("Mesh::Feature","Diff_Sphere_Cylinder").Mesh=diff
doc = FreeCAD.ActiveDocument
d.recompute()
obj = d.addObject("Mesh::Feature", "Pipe")
</syntaxhighlight>
obj.Mesh = pipe
doc.recompute()
}}
{{Top}}
==Hinweise==


Eine umfangreiche, wenn auch schwer zu bedienende Quelle für auf Mesh bezogenes Skripten sind die Einheitstestkripte des {{incode|Mesh}} Moduls.
=== Examining and Testing ===
In diesen Komponententests werden buchstäblich alle Methoden aufgerufen und alle Eigenschaften/Attribute optimiert.

Wenn Du also kühn genug bist, schau Dir das [http://free-cad.svn.sourceforge.net/viewvc/free-cad/trunk/src/Mod/Mesh/App/MeshTestsApp.py?view=markup Komponententestmodul] an.
=== Write your own Algorithms ===

=== Exporting ===
You can even write the mesh to a python module:

<syntaxhighlight>
m.write("D:/Develop/Projekte/FreeCAD/FreeCAD_0.7/Mod/Mesh/SavedMesh.py")
import SavedMesh
m2 = Mesh.Mesh(SavedMesh.faces)
</syntaxhighlight>

=== Gui related stuff ===

=== Odds and Ends ===
An extensive (though hard to use) source of Mesh related scripting are the unit test scripts of the Mesh-Module.
In this unit tests literally all methods are called and all properties/attributes are tweaked.
So if you are bold enough, take a look at the [http://free-cad.svn.sourceforge.net/viewvc/free-cad/trunk/src/Mod/Mesh/App/MeshTestsApp.py?view=markup Unit Test module].

{{docnav|FreeCAD Scripting Basics|Topological data scripting}}

[[Category:Poweruser Documentation]]
[[Category:Python Code]]


Siehe auch: [[Mesh_API/de|Mesh API]]
{{Top}}
{{Powerdocnavi{{#translation:}}}}
[[Category:Developer Documentation{{#translation:}}]]
[[Category:Python Code{{#translation:}}]]
{{Mesh Tools navi{{#translation:}}}}
{{clear}}
{{clear}}
<languages/>

Latest revision as of 08:28, 5 September 2021

Einführung

Um Zugriff auf das Modul Mesh zu erhalten, musst du es zuerst importieren:

import Mesh

Erstellung

Um ein leeres Netz Objekt zu erstellen, benutze einfach den Standard Konstruktor:

mesh = Mesh.Mesh()

Du kannst auch ein Objekt aus einer Datei erstellen:

mesh = Mesh.Mesh("D:/temp/Something.stl")

Oder erstelle es aus einer Reihe von durch ihre Eckpunkte beschriebenen Dreiecken:

triangles = [
# triangle 1
[-0.5000, -0.5000, 0.0000], [0.5000, 0.5000, 0.0000], [-0.5000, 0.5000, 0.0000],
#triangle 2
[-0.5000, -0.5000, 0.0000], [0.5000, -0.5000, 0.0000], [0.5000, 0.5000, 0.0000],
]
meshObject = Mesh.Mesh(triangles)
Mesh.show(meshObject)

Der Netz-Kernel kümmert sich um die Schaffung einer topologisch richtigen Datenstruktur, durch Sortieren deckungsgleicher Punkte und Kanten.

Anfang

Modellieren

Um regelmäßige Geometrien zu erstellen, kannst Du eine der create*() Methoden verwenden. Ein Torus kann zum Beispiel wie folgt erstellt werden:

m = Mesh.createTorus(8.0, 2.0, 50)
Mesh.show(m)

Die ersten beiden Parameter definieren die Radien des Torus und der dritte Parameter ist ein Teilabtastfaktor dafür, wie viele Dreiecke erzeugt werden. Je höher dieser Wert, desto glatter das Netz.

Das Netz Modul bietet auch drei boolesche Methoden: vereinigen(), kreuzung() und differenz():

m1, m2              # are the input mesh objects
m3 = Mesh.Mesh(m1)  # create a copy of m1
m3.unite(m2)        # union of m1 and m2, the result is stored in m3
m4 = Mesh.Mesh(m1)
m4.intersect(m2)    # intersection of m1 and m2
m5 = Mesh.Mesh(m1)
m5.difference(m2)   # the difference of m1 and m2
m6 = Mesh.Mesh(m2)
m6.difference(m1)   # the difference of m2 and m1, usually the result is different to m5

Hier ist ein Beispiel, das eine Pipe mit der Methode difference() erstellt:

import FreeCAD, Mesh
cylA = Mesh.createCylinder(2.0, 10.0, True, 1.0, 36)
cylB = Mesh.createCylinder(1.0, 12.0, True, 1.0, 36)
cylB.Placement.Base = (FreeCAD.Vector(-1, 0, 0)) # move cylB to avoid co-planar faces
pipe = cylA
pipe = pipe.difference(cylB)
pipe.flipNormals() # somehow required
doc = FreeCAD.ActiveDocument
obj = d.addObject("Mesh::Feature", "Pipe")
obj.Mesh = pipe
doc.recompute()

Anfang

Hinweise

Eine umfangreiche, wenn auch schwer zu bedienende Quelle für auf Mesh bezogenes Skripten sind die Einheitstestkripte des Mesh Moduls. In diesen Komponententests werden buchstäblich alle Methoden aufgerufen und alle Eigenschaften/Attribute optimiert. Wenn Du also kühn genug bist, schau Dir das Komponententestmodul an.

Siehe auch: Mesh API

Anfang