Engine Block Tutorial/it: Difference between revisions

From FreeCAD Documentation
(Created page with "Quindi, anche se in questo caso è un po ''esagerato'', gli altri bulloni sono realizzati riflettendo gli esistenti, per una dimostrazione. Tornare in Ambiente Parte tramite ...")
(Created page with "A questo punto del lavoro si dovrebbe avere un blocco motore con i cilindri forati e le posizioni dei bulloni segnate.")
Line 281: Line 281:
Selezionare ''Bullone 1'' nella lista della Vista combinata e impostare XZ per il ''piano di riflessione'', quindi premere OK (fare la stessa cosa per i bulloni 2 e 3).
Selezionare ''Bullone 1'' nella lista della Vista combinata e impostare XZ per il ''piano di riflessione'', quindi premere OK (fare la stessa cosa per i bulloni 2 e 3).


A questo punto del lavoro si dovrebbe avere un blocco motore con i cilindri forati e le posizioni dei bulloni segnate.
At this point you should have a basic engine block with the cylinders bored out and the headbolt locations marked.


=== Cutting Down the Excess Billet Material from the Block ===
=== Cutting Down the Excess Billet Material from the Block ===

Revision as of 21:43, 2 December 2014

Questa è una guida introduttiva alla modellazione in FreeCAD.

Il tutorial si propone di far conoscere i tipi di dati primitivi per gli oggetti parametrici, le operazioni booleane, il disegno 2D e il processo di conversione di progetti 2D in modelli 3D.

Come lavoro di esempio viene modellato un semplice monoblocco motore con il basamento come mostrato nella figura a destra.

Operazioni iniziali

Per cominciare, aprire FreeCAD, andare su File-> Nuovo e creare un nuovo documento, quindi andare su File-> Salva e salvarlo sul computer dove si preferisce, denominare 'Motore' il progetto.

Notare che, dopo aver salvato il progetto, nella vista della struttura sul lato sinistro dello schermo, viene mostrato il nome del progetto su cui si sta lavorando. È possibile avere contemporaneamente più progetti aperti, in questo caso, nella vista ad albero tutti i progetti sono mostrati come radice di un albero.

Sgrossatura della billetta

Ora si inizia a lavorare sul modello. Per prima cosa aggiungere un cubo (Box) per rappresentare la sagoma del blocco motore. Per fare questo si deve aggiungere un oggetto Parte al modello, andare quindi in Visualizza -> Ambienti -> Parte e selezionare il Modulo Parte.

Notare che dopo aver selezionato l'ambiente di lavoro, la barra degli strumenti in alto propone un diverso set di pulsanti. Esplorare un paio di altri 'Ambienti di lavoro' per familiarizzare con il sistema degli ambienti e poi tornare al modulo parte.

Il Blocco Motore

Nel modulo parte si vedono diversi pulsanti per creare degli oggetti primitivi del tipo cubo, sfera, cono, ecc.

Fare clic sul pulsante Cubo per aggiungerne uno alla scena.

Ciascuno degli oggetti primitivi elencati ha una serie predefinita di parametri che vengono impostati quando la forma primitiva viene aggiunta alla scena. Si può provare ad aggiungerne una forma per tipo e vedere come si presentano. Le primitive possono essere rimosse dalla scena selezionandole e premendo il tasto di cancellazione. Ci sono due modi per selezionare gli oggetti: è possibile usare il tasto sinistro del mouse su di loro nella vista 3D, oppure è possibile cliccare sul loro nome nella vista ad albero alla sinistra. In entrambi i metodi, tenere premuto CTRL durante la selezione permette la selezione multipla. È possibile ingrandire la visualizzazione 3D con la rotellina del mouse. Per spostare la vista, premere il tasto centrale e trascinare. Per ruotare la vista premere e tenere premuto il pulsante centrale del mouse e contemporaneamente premere e tenere premuto il pulsante sinistro del mouse, quindi trascinare il mouse e eseguire la rotazione. Si può anche fare un click con il pulsante centrale in un punto all'interno di un oggetto 3D per produrre la rotazione dello spazio 3D intorno a quel punto. Inoltre, i numeri 1-6 e il numero 0 del tastierino numerico visualizzano la scena secondo le viste standard (dall'alto, da sinistra, assonometrica, ecc.). Dedicare un paio di minuti per prendere confidenza con la manipolazione della visualizzazione 3D.

Ulteriori letture: Navigazione 3D

Dopo aver posizionato il cubo e acquisito dimestichezza con il mouse, si prosegue impostando le dimensioni del modello CAD.

Selezionare il cubo cliccando su di esso nella vista ad albero e poi fare clic sulla scheda Dati della Finestra delle proprietà che si trova sotto la vista ad albero (se l'albero è stato chiuso andare in Visualizza -> Viste -> Visualizza proprietà).

Nella scheda dei dati è possibile modificare le proprietà dell'oggetto selezionato nella vista ad albero. Sempre nella stessa scheda, secondo il tipo di oggetto selezionato, si devono impostare differenti parametri. Per un cubo (scatola) servono 3 vettori, uno per la sua posizione nello spazio 3D, un altro per il suo orientamento e un terzo per definire le sue dimensioni. Per una sfera si deve specificare il suo punto centrale, e il raggio. I coni hanno un raggio, una altezza e la posizione, e così via.

In questo caso si stà costruendo un piccolo blocco motore a due cilindri quindi impostare la dimensione e la posizione del cubo con i seguenti valori (accertarsi di impostare correttamente i valori X,Y,Z di Posizione, mentre per quelli di 'Asse', che impostano l'asse di rotazione, vanno bene i valori di default):

X: 0.0 mm Altezza: 110.0 mm
Y: -40.0 mm Larghezza: 140.0 mm
Z: 0.0 mm Lunghezza: 80.0 mm

Dopo aver dimensionato correttamente il blocco motore, dare al progetto un nome più descrittivo. Selezionarlo nella vista ad albero e usare il tasto destro del mouse per rinominarlo oppure premere il tasto F2 della tastiera. Chiamare 'Billetta' questa parte.

Il primo cilindro

Ora si procede praticando il foro del primo cilindro in tutta la lunghezza del blocco motore. Per fare questo, occorre aggiungere al modello un cilindro con la forma che si desidera asportare e poi eseguire una operazione booleana per "sottrarre" il materiale dal blocco.

Fare clic sul pulsante aggiungi Cilindro per creare un nuovo cilindro, quindi selezionarlo nella vista ad albero e impostarne le proprietà come segue:

X: 40.0 mm Altezza: 110.0 mm
Y: 0.0 mm Raggio: 25.0 mm
Z: 0.0 mm

Se le proprietà sono impostate correttamente, si vedono le estremità circolari del cilindro sulle facce superiore ed inferiore del blocco motore.

Selezionare questo oggetto nella vista ad albero e nominarlo Cilindro 1.

Il secondo cilindro

È possibile creare il secondo cilindro nello stesso modo del primo, però è molto più facile copiare il lavoro già fatto per il primo e cambiare solo la coordinata X della posizione.

Per fare questo, selezionare Cilindro 1 nella vista ad albero e poi andare in Modifica -> Duplica Selezione.

Appena impartito il comando, si vede immediatamente apparire il nuovo cilindro nella vista ad albero (rinominarlo subito Cilindro 2), ma non lo si vede nella vista 3D, in quanto è nella stessa posizione del primo cilindro. Ora selezionare Cilindro 2 nella vista ad albero e poi modificare la sua coordinata X impostandola in 100 mm.

Notare che mentre si aggiornano i numeri nel campo dati si vede il movimento del cilindro nella vista 3D.

Dopo che il secondo cilindro è ubicato correttamente è possibile vedere il suo aspetto. Per vedere l'aspetto del cilindro selezionare la Billetta nella vista ad albero e poi nasconderla premendo la barra spaziatrice (notare che ​​nella vista ad albero gli oggetti nascosti appaiono disattivati). Come esercizio, nascondere tutti tre gli oggetti uno ad uno e poi mostrarli di nuovo.

Forare il Blocco

Ora che entrambi i cilindri sono posizionati essi vanno utilizzati per forare il blocco in modo appropriato. Per fare questo si applicano le Operazioni Booleane sulle 3 primitive. Iniziare creando una unione dei due cilindri in modo da poterli sottrarre contemporaneamente, come gruppo, dal blocco.

Selezionare Cilindro 1 nella vista ad albero con CTRL + Tasto sinistro poi nello stesso modo selezionare anche Cilindro 2. Ora premere il pulsante Unione per fondere gli oggetti in uno solo.

Notare che nella vista ad albero, ora è presente un nuovo oggetto chiamato Fusion. Facendo clic sulla freccia accanto a Fusion si vedono i due cilindri, ma essi non sono accessibili.

Rinominare il blocco con Cilindri al posto di Fusion, così in seguito sarà più facile trovarlo.

A questo punto si deve forare il blocco motore.

Selezionare Billetta e quindi selezionare anche Cilindri poi premere il pulsante Taglia (Differenza).

I due oggetti selezionati sono di nuovo uniti come per una operazione di unione e il singolo oggetto risultante viene chiamato Cut (che è bene rinominare in Billetta Forata). Premere il tasto 2 del tastierino numerico per ottenere la vista dall'alto e poter guardare dall'altra parte del blocco motore dritto verso il basso attraverso i cilindri, quindi con Tasto centrale + Tasto sinistro (entrambi premuti) + Trascinare ruotare e osservare il blocco motore. Il risultato dovrebbe essere simile alla figura a destra.

Notare che nella schermata la vista ad albero sulla sinistra è espansa per visualizzare le primitive individuali e che è selezionato Cilindro 2 per esaminare la sua scheda Dati nella finestra delle Proprietà.

I vantaggi chiave della modellazione parametrica

Ora che i cilindri sono stati scavati si può capire facilmente uno dei vantaggi di questo sistema. Supporre che ad un certo punto dello sviluppo, si scopre che si vogliono dei cilindri un po 'più grandi. Dato che le operazioni di unione e di intersezione eseguite sono state registrate e raggruppate nella vista ad albero, è possibile cambiare la dimensione del cilindro e FreeCAD deve solo eseguire nuovamente il processo di unione e intersezione per determinare la dimensione del nuovo motore. Prima di continuare l'esercitazione, provare a modificare il raggio e la posizione dei due cilindri e poi tornare ai parametri definiti prima.

Il Carter

Billetta e alloggiamento dell'albero motore

Ora si tratta di lavorare sul basamento sotto al monoblocco.

Aggiungere un nuovo box o cubo, rinominarlo Billetta Basamento, e assegnargli le seguenti proprietà:

X: 0.0 mm Height: 85.0 mm
Y: -50.0 mm Length: 140.0 mm
Z: -85.0 mm Width: 100.0 mm

Per tenere separata la parte basamento è possibile attribuirgli un colore diverso. Per cambiare il colore fare clic destro sull'oggetto nella vista ad albero e modificarlo. È possibile assegnare all'oggetto un colore personalizzato o un colore casuale (scegliere nuovamente casuale se il colore attuale non piace).

Aggiungere un altro cubo denominato Taglio di accoppiamento, e assegnargli le seguenti proprietà:

X: 0.0 mm Height: 30.0 mm
Y: -40.0 mm Length: 140.0 mm
Z: -85.0 mm Width: 80.0 mm

poi ritagliare il Taglio di accoppiamento dalla Billetta Basamento (selezionare prima Billetta Basamento):

Rinominare il risultante oggetto Cut in Basamento scavato.

Scavare l'alloggiamento dell'albero

Il prossimo taglio è semi-circolare e serve per alloggiare nel basamento l'albero a gomiti. Si inizia con un cilindro, però l'orientamento predefinito del cilindro è verticale, mentre quì ne serve uno orizzontale. Questo significa che si deve capire come ruotare il cilindro per allinearlo correttamente con il motore. Guardando gli assi guida nell'angolo in basso a destra della finestra 3D si vede che l'albero motore deve essere collocato lungo l'asse x positivo. Rispetto alla posizione iniziale è quindi necessario ruotare il cilindro di 90 gradi attorno ad un asse parallelo all'asse y della scena. Questa operazione permette anche di capire quali parametri si devono inserire per il cilindro.

Creare un cilindro chiamato Scavo per l'albero e attribuirgli le seguenti proprietà (notare che ora si devono specificare i parametri di orientamento, nello stesso modo usato prima per le dimensioni degli alesaggi dei cilindri):

Axis X: 0.0 mm Angolo: 90.0 gradi
Axis Y: 1.0 mm
Axis Z: 0.0 mm
Position X: 0.0 mm Altezza: 140.0 mm
Position Y: 0.0 mm Raggio: 20.0 mm
Position Z: -55.0 mm

Asportare lo Scavo per l'albero dal Basamento scavato e rinominare il risultante oggetto in Basamento con alloggiamento.

Finire il basamento

Infine si devono asportare 2 cubi, per consentire il passaggio delle bielle dal blocco motore all'albero motore attraverso il basamento.

Creare due oggetti chiamati Cubo intagliatore 1 e Cubo intagliatore 2 con le seguenti proprietà:

X: 15.0 mm Height: 55.0 mm
Y: -25.0 mm Length: 50.0 mm
Z: -55.0 mm Width: 50.0 mm
X: 75.0 mm Height: 55.0 mm
Y: -25.0 mm Length: 50.0 mm
Z: -55.0 mm Width: 50.0 mm

Unire i due cubi in un oggetto chiamato Cubi intagliatori, poi asportare questo oggetto da Basamento con alloggiamento, chiamando Carter il risultato finale.

Ricordare, che è possibile nascondere il Blocco Motore selezionandolo e premendo la barra spaziatrice in modo da poter vedere meglio cosa si sta facendo, inoltre, e che è possibile duplicare Cubo intagliatore 1 e cambiare solo la coordinata X per ottenere il Cubo intagliatore 2.

Il risultato finale dovrebbe essere simile alla figura di destra. Nella schermata la vista ad albero è completamente espansa e si vede la gerarchia delle operazioni booleane utilizzate per costruire il dispositivo. Ricordare che si può ancora intervenire nella vista albero e cambiare diametro al cilindro, modificare le dimensioni o la posizione dell'albero a gomiti, ecc, senza dover ricostruire l'intero modello da zero. Dal basamento si può ancora asportare altro materiale, ma per ora è sufficiente quanto fatto.

Il lavoro prosegue utilizzando la modalità di elaborazione 2D per progettare la sagoma della testata e ridurre il peso del blocco motore rimuovendo dalla billetta gran parte del materiale inutile che è ancora presente intorno ai cilindri.

Disegno 2D della guarnizione di testa

Per i fori dei bulloni della testa e per la forma del blocco motore sono usate in seguito varie operazioni booleane con cui "asportare" le parti del blocco che non servono. Ogni bullone della testa è fatto nello stesso modo, e attraversa tutto il monoblocco fino al carter, l'unica differenza è la loro posizione alla sommità della testa. Questo significa che si può semplicemente "disegnare" la forma della guarnizione della testata sulla faccia superiore del motore, e poi utilizzarla anche come modello per eseguire i fori che si desiderano.

Entrare in modalità Disegno 2D

La prima cosa da fare è passare all'ambiente di lavoro Disegno 2D, per fare questo dalla modalità Parte è possibile selezionare Disegno 2D nel menu a tendina in alto che attualmente riporta la voce Parte. Quando non si riesce a trovare la casella a discesa (non tutti gli ambienti di lavoro mostrano questa la casella) è possibile selezionare un ambiente con Visualizza -> Ambienti. Anche se il disegno da eseguire è un disegno 2D, si lavora nella finestra 3D dicendo a FreeCAD in quale piano deve proiettare i disegni. Quando si seleziona l'ambiente Disegno 2D viene mostrata la barra degli strumenti di questo ambiente e nella parte destra immediatamente sopra della vista 3D vengono visualizzate varie icone. Per impostare il piano di lavoro (piano di proiezione dei disegni) fare clic sul pulsante dell'icona più a sinistra in cui è presente una delle seguenti voci {none, top, front, size o d(..., ..., ...)}. Dopo aver cliccato su tale pulsante, sul lato sinistro della barra appaiono i comandi di selezione del piano composti da una casella di testo per inserire un offset, e altri 5 pulsanti: XY, XZ, YZ, Vista, e None. I primi tre sono la vista dall'alto, la vista anteriore e la vista laterale. La voce Vista utilizza il piano perpendicolare alla direzione di visualizzazione (piano di vista dell'osservatore). L'ultimo (None) non proietta in un piano e permette di definire tutte le coordinate XYZ di ogni punto che si disegna. In questa esercitazione serve impostare un piano orizzontale scostato di 110 (digitare il valore e premere Invio) poi fare clic sul pulsante XY per proiettare il disegno sul piano XY, collocato a 110 millimetri sull'asse Z e che corrisponde alla faccia superiore del blocco motore.

Ora che si è detto a FreeCAD in quale piano deve disegnare si può iniziare a progettare la guarnizione della testata.

Un'ultima cosa da fare è impostare la visualizzazione 3D. Anche se tutti i disegni prodotti sono proiettati nel piano 2D precedentemente definito, si può osservare il piano in cui si disegna da qualsiasi angolazione (compreso il lato opposto del piano in modo da disegnare "al rovescio"). Poiché il piano di lavoro è quello complanare alla parte superiore del blocco motore, è bene impostare la vista 3D secondo tale piano, o almeno approssimativamente in quella direzione.

Premere il tasto 2 del tastierino numerico per attivare la vista dall'alto (notare che sul tastierino numerico, i tasti adiacenti attivano viste opposte quindi 1 e 4 sono fronte-retro, 2 e 5 sono alto-basso, e 3 e 6 sono destra-sinistra). Con il motore in vista dall'alto verso il basso, è possibile centrarlo nell'area di lavoro trascinandolo con il pulsante centrale del mouse per spostare la vista.

Infine, la modalità Disegno 2D permette di agganciare (fare lo snap) parti del disegno agli angoli del blocco motore, al centro dei cilindri, ecc. Per agevolare questi agganci, è utile nascondere il carter così i nuovi disegni si agganciano solo alla parte su si sta lavorando (premere la barra spaziatrice per mostrare o nascondere l'oggetto selezionato).

Disposizione dei bulloni della testata

Dopo che il corretto piano di proiezione e la visualizzazione sono impostati si aggiungono gli elementi di disegno 2D nello stesso modo usato per aggiungere le primitive.

Fare clic sul pulsante Cerchio e muovere il mouse nella vista 3D.

A questo punto è necessario fornire a FreeCAD la posizione XY per il centro del cerchio, e il valore del raggio. In entrambi i casi è possibile inserire i dati con il mouse (seguendo le istruzioni nella barra di stato in basso a sinistra), oppure digitare i valori nelle caselle di immissione di testo che appaiono sopra la vista ad albero.

Proseguire aggiungendo un paio di cerchi casuali sulla parte superiore del motore, nonché alcuni non sul ​​motore, cioè appena fuori dall'oggetto, nello spazio vuoto circostante la figura del motore. Dopo queste operazioni, ruotare la vista intorno alla parte superiore del blocco motore e osservare i cerchi disegnati, notare che essi sono "appiattiti" nel piano in cui sono proiettati e che le linee della faccia superiore del blocco motore sono anche esse in questo piano; questo sarà importante quando si andrà ad estrudere il disegno per modellare il motore. Ora che si sà come aggiungere gli elementi 2D è possibile eliminare i cerchi aggiunti per prova e poi iniziare a definire l'aspetto effettivo della testata.

Attenzione, se il cerchio scompare all'interno del blocco motore, significa che il piano di proiezione del disegno non è correttamente impostato in modalità XY e con offset 110 mm.

L'aggiunta di elementi di disegno con il mouse è veloce e facile, ma non è molto precisa.

Per creare il modello del bullone, inizialmente si approfitta del fatto che muovendo il mouse si aggiornano i numeri nelle caselle di testo appena sopra la vista 3D e che questo permette di vedere le coordinate del punto in cui si vuole posizionare l'elemento.

Ottenute queste coordinate approssimative si passa a digitare i reali valori che servono per un posizionamento di precisione.

Per aggiungere un cerchio, ripristinare la vista dall'alto del motore, fare clic sul pulsante Aggiungi cerchio, e spostare il mouse in prossimità dell'angolo in alto a sinistra del blocco motore in modo da occupare una posizione valida per la testa del bullone.

Pare che X = 10, Y = 30, sia una buona posizione per il cerchio (notare che la coordinata Z deve essere disattivata, se non lo è si deve impostare correttamente il piano come descritto nella sezione precedente, premendo Esc si annulla il disegno del cerchio).

Ora che si sà come determinare facilmente le coordinate degli elementi del disegno si può progettare un modello di bullone o altre forme 2D per ulteriori parti, quali i canali del circuito dei fluidi, scanalature, ecc. Per i primi 3 bulloni di un lato della testata usare le seguenti coordinate:

Notare che durante la digitazione dei valori nelle caselle si può premere Invio per passare alla casella successiva, inoltre è meglio spostare il mouse fuori dalla vista 3D prima di iniziare a digitare le coordinate in quanto il movimento del mouse può sovrascrivere i numeri che sono già stati inseriti nei campi di immissione di testo. Inoltre, su alcuni sistemi, per qualche motivo, ci sono problemi con la digitazione dei cerchi che hanno la loro coordinata Z impostata a 12.5, se succede questo, è possibile impostare il piano di proiezione del disegno su Nessuno e quindi immettere manualmente le coordinate Z che per i cerchi deve essere 110. Infine, durante la creazione dei cerchi, accertarsi di attivare la casella Riempito altrimenti quando essi si estrudono creano solo tubi e non cilindri solidi.

X1: 10 Y1: 25 Raggio: 2.5 mm
X2: 70 Y2: 25 Raggio: 2.5 mm
X3: 130 Y3: 25 Raggio: 2.5 mm

Notare che durante la digitazione dei valori nelle caselle si può premere Invio per passare alla casella successiva, inoltre è meglio spostare il mouse fuori dalla vista 3D prima di iniziare a digitare le coordinate in quanto il movimento del mouse può sovrascrivere i numeri che sono già stati inseriti nei campi di immissione di testo. Inoltre, su alcuni sistemi, per qualche motivo, ci sono problemi con la digitazione dei cerchi che hanno la loro coordinata Z impostata a 12.5, se succede questo, è possibile impostare il piano di proiezione del disegno su Nessuno e quindi immettere manualmente le coordinate Z che per i cerchi deve essere 110. Infine, durante la creazione dei cerchi, accertarsi di attivare la casella Riempito altrimenti quando essi si estrudono creano solo tubi e non cilindri solidi.

Chiamare i cerchi Bullone 1 Bullone 2 e Bullone 3.

L'altro lato del Blocco

Ora che i primi tre bulloni sono situati su un lato del motore, servono altri tre bulloni speculari sul lato opposto, ci sono tre modi per ottenere questo:

  • Si può continuare ad aggiungere cerchi come fatto per i primi tre e variare solo la coordinata Y in modo da posizionare i bulloni sul lato opposto del motore.
  • Si può selezionare i tre cerchi esistenti, andare in Modifica-> Duplica Selezione e poi variare le coordinate Y dei tre nuovi cerchi.
  • Si può utilizzare la funzionalità di specchio del Modulo Parte.

Dal momento che in questo esempio il primo e il secondo metodo sono già stati utilizzati, si sceglie la terza via. Ognuno dei tre metodi ha i suoi vantaggi e svantaggi, ma è buona regola utilizzare i primi due metodi con i modelli semplici (come questo), mentre con i modelli con molte duplicazione e/o con duplicazioni di forme/oggetti molto complicati si dovrebbe preferire il terzo metodo.

Quindi, anche se in questo caso è un po esagerato, gli altri bulloni sono realizzati riflettendo gli esistenti, per una dimostrazione.

Tornare in Ambiente Parte tramite Visualizza -> Ambienti (notare che si può anche sempre passare all'ambiente Completo per vedere tutti gli strumenti contemporaneamente, e per non commutare ripetutamente l'ambiente).

Selezionare i tre cerchi dei bulloni nella vista ad albero, e quindi premere il pulsante Specchio.

Quando si preme il pulsante specchio si dovrebbe vedere un nuovo pannello pop-up chiamato Vista Combinata nel pannello sotto la vista ad albero. Molti strumenti hanno bisogno di ulteriori input prima di poter eseguire le operazioni e la Vista Combinata consente di immettere questi parametri. È possibile ridimensionare il pannello della Vista combinata trascinando in sù o in giù la linea di divisione che lo separa dalle proprietà.

Selezionare Bullone 1 nella lista della Vista combinata e impostare XZ per il piano di riflessione, quindi premere OK (fare la stessa cosa per i bulloni 2 e 3).

A questo punto del lavoro si dovrebbe avere un blocco motore con i cilindri forati e le posizioni dei bulloni segnate.

Cutting Down the Excess Billet Material from the Block

Now that we have holes marked out for headbolts (we could do the same thing for oil channels, water jackets, etc) we will want to "trim" the outside of the block billet down to a more suitable shape. This will make the engine lighter, allow it to cool more easily, mean less steel must be used to cast the block. Like the bolt pattern we will be laying out a 2 dimensional drawing outlining the shape we want on the finished product. We could draw the spline curve directly with the mouse, or use the hybrid approach like we used for the circles where we used the mouse to find approximate coordinates and then typed in the true values we wanted. A more interesting approach is to use the 2D drafting's construction mode to plot a few guide shapes to help us trace out a nice, symmetric, spline curve by snapping to our constructed guide shapes.

As a guide we will draw two regular polygons for each cylinder, with the polygons concentric with the cylinder. To begin, switch to the top view of the engine block, hide the crankcase, switch back to the 2D drafting workbench, select the reference plane offset to 110 mm and the XY plane mode (or the None mode if you prefer), and click the Construction mode button in the command bar (the construction mode button looks like a trowel and is located just above the top right corner of the 3D view). Construction mode works just like the normal mode except any 2D drawing objects created while in construction mode get drawn in a different color and are automatically put into a separate group in the Tree view, this allows you to hide you guide drawings and leave behind only the real things like bolt hole markings by hiding the construction group, or to delete all of the guide objects by just deleting the group.

Further reading: Construction Mode

Now that your drawing plane is properly set up and you are in construction mode, click the Regular Polygon button () and move your mouse along the edge of the left cylinder while holding down the CTRL button. You should see that it is snapping a small black dot either to the edge of the cylinder, or to the center of the cylinder, depending on where your mouse is along the circumference. Move so that the black dot snaps to the center of the cylinder and click the left mouse button. This places the center of the polygon at the center of the cylinder, the program prompts us for the number of edges on the polygon and the radius it is inscribed in. Investigating with the mouse a little bit looks like a radius of 30 is good (so type that in) and enter 14 for the number of side, but leave the Filled box unchecked this time. If you can't get the snap to lock onto the center of the cylinder (I had trouble with mine) you can always enter the coordinates manually (X=40, Y=0, Z=110). Add a second polygon, also centered on the left cylinder but this one should have 22 side and 45 mm radius. Finally add the same two polygons over the right cylinder (centered at X=100, Y=0, Z=110). When you are finished you should have two "figure-8's" surrounding the cylinders and head bolts. (Note that currently the program does not actually prompt you for the number of edges so you will just have to set the center and radius and then change the number of faces in the Property view).

Now that we have our guide polygons in place we are ready to draw in the spline curve defining the outside shape of the engine block. Since this curve will be part of the final object you can turn off construction mode by clicking the same button you pressed to turn it on. Now click the Add BSpline button () and start drawing the BSpline by CTRL+left clicking on each place you want to add a control point for the spline curve. You will want your first control point to be on the leftmost point of the inner guide polygon for the left cylinder. Continue adding control points all along the spline curve until you click on the last point before the one you started drawing, then click the Close button up where you typed in the position and radius for the 2D circles we drew for the headbolts. Clicking this close button finished drawing control points for the spline curve and joins the ends together to form a closed loop. It is very important that you properly close loops like this if you plan to extrude them into solid objects like we will be with this one. For open spline curves you can just click the Finish button instead of the Close button when you are finished drawing. To the right you can see what you finished spline curve should look like just before you press the close button (notice I have drawn all but the last line segment and my mouse pointer is just about to click the Close button to finish the spline curve). Also notice that I have checked the Filled box so the resulting spline curve will form a solid sheet, rather than just an empty ring, this must be done to extrude it into a solid shape that is capped on the ends.

The control points are not shown in that picture so I have added a second screenshot showing the finished spline in edit mode (click the Edit mode button to turn editing on or off for the selected object, make sure to turn it off when you are done editing it or just skip over this step if you are satisfied with your engine block shape). Also, note that there is a discontinuity on the leftmost edge of the spline curve, even though it is closed properly, this is a bug in the program behavior and is currently being fixed, as a result your spline curve may look slightly different if you are running a newer version of the software than is available at this time.

Extruding the 2D Head Design into our 3D Model to Finish the Design

Now we are closing in on the final design of the engine. Return to the Part workbench and click the Extrude sketch button (). In the combo box that pops up, use CTRL+LeftClick to select the 6 head bolts and the spline curve for extrusion. The default direction is the positive Z axis, we want the negative Z axis to extrude the head design "down" and into the engine block so set the direction to X=0, Y=0 and Z=-1, then type in 110 for the length (the height of the engine block). After you get all the values entered and click OK the circles for the bolts will be extruded downward to for cylinders and the spline will be extruded downward to produce a sort of cylinder with "rippled" edges. Select and hide the Bored block so you can see the extruded spline, then hide that object so you can see the 6 head bolt cylinders. You see that very sophisticated 3D shapes can be made by starting with a 2D drawing and extruding parts of it downward. We could even extrude different parts of the drawing by different amounts to do things like bore in bolt holes that just go part way through the block, but cut separate water jackets that go all the way through. At this point all your extruded objects are just named "Extrude001..." so you will want to go through and name each of them so you can identify them in the next section (I will name mine Head bolt bore 1 though 6 and name the spline Extruded spline, I suggest using the same names in your model as well). Now that you have your extruded shapes it is just a few boolean operations now to produce the final block design. Go through and show the major components (the Bored block and the Crankcase), and all your newly created extruded objects.

Now that we have 3D objects for the bore holes and the outer shape, we can use a few boolean operations to stitch the whole thing together. Select your 6 extruded head bolts in the tree view and join them into a union (name the resulting object Head bolt boreholes). Then select the Bored block and the Head bolt boreholes in that order and perform a cut (like you did when you bored out the cylinders), name the resulting Cut object Block with headbolts. Finally, select the Block with headbolts and the Extruded spline and press the Make intersection button (), and name the resulting object Engine block. Your final object should look like the picture on the right.