Macro Cupola Geodetica

From FreeCAD Documentation
Revision as of 21:07, 24 June 2016 by FuzzyBot (talk | contribs) (FuzzyBot moved page Macro GeodesicDome/it to Macro Geodesic Dome/it without leaving a redirect: Part of translatable page "Macro GeodesicDome".)

File:Text-x-python Macro GeodesicDome

Descrizione
Questa macro crea il guscio di una cupola geodetica

Autore: Ulrich Brammer
Autore
Ulrich Brammer
Download
None
Link
Versione macro
1.0
Data ultima modifica
None
Versioni di FreeCAD
None
Scorciatoia
Nessuna
Vedere anche
Nessuno

Questa macro crea il guscio di una cupola (sfera) geodetica. Il raggio della cupola e il parametro di frequenza (fattore d'arco) sono definiti al momento della creazione.


File:Geodesic macro.png


# -*- coding: utf-8 -*-

# Form implementation generated from reading ui file 'geodesic_dialog.ui'
# And changed manually to use FreeCAD "Gui::InputField"
# Created: Sun Jan  4 22:20:58 2015
#      by: pyside-uic 0.2.15 running on PySide 1.2.2
#
# 
'''
************************************************************************
* Copyright (c)2015 Ulrich Brammer <ulrich1a[at]users.sourceforge.net> *
*                                                                      *
* This file is a supplement to the FreeCAD CAx development system.     *
*                                                                      *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU Lesser General Public License (LGPL)   *
* as published by the Free Software Foundation; either version 2 of    *
* the License, or (at your option) any later version.                  *
* for detail see the LICENCE text file.                                *
*                                                                      *
* This software is distributed in the hope that it will be useful,     *
* but WITHOUT ANY WARRANTY; without even the implied warranty of       *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the        *
* GNU Library General Public License for more details.                 *
*                                                                      *
* You should have received a copy of the GNU Library General Public    *
* License along with this macro; if not, write to the Free Software    *
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 *
* USA                                                                  *
*                                                                      *
************************************************************************
'''


from PySide import QtCore, QtGui
import FreeCAD, FreeCADGui, math, Part
from FreeCAD import Base

class Ui_Dialog(object):
  def setupUi(self, Dialog):
    Dialog.setObjectName("Dialog")
    Dialog.resize(477, 188)
    self.dia = Dialog
    self.gridLayoutWidget = QtGui.QWidget(Dialog)
    self.gridLayoutWidget.setGeometry(QtCore.QRect(19, 19, 440, 141))
    self.gridLayoutWidget.setObjectName("gridLayoutWidget")
    self.gridLayout = QtGui.QGridLayout(self.gridLayoutWidget)
    self.gridLayout.setContentsMargins(0, 0, 0, 0)
    self.gridLayout.setObjectName("gridLayout")
    self.label = QtGui.QLabel(self.gridLayoutWidget)
    self.label.setObjectName("label")
    self.gridLayout.addWidget(self.label, 0, 0, 1, 1)
    #self.lineEdit = QtGui.QLineEdit(self.gridLayoutWidget)
    fui = FreeCADGui.UiLoader()
    self.lineEdit = fui.createWidget("Gui::InputField")
    
    self.lineEdit.setObjectName("lineEdit")
    self.gridLayout.addWidget(self.lineEdit, 0, 1, 1, 1)
    self.label_2 = QtGui.QLabel(self.gridLayoutWidget)
    self.label_2.setObjectName("label_2")
    self.gridLayout.addWidget(self.label_2, 1, 0, 1, 1)
    self.lineEdit_2 = QtGui.QLineEdit(self.gridLayoutWidget)
    self.lineEdit_2.setObjectName("lineEdit_2")
    self.gridLayout.addWidget(self.lineEdit_2, 1, 1, 1, 1)
    self.label_3 = QtGui.QLabel(self.gridLayoutWidget)
    self.label_3.setObjectName("label_3")
    self.gridLayout.addWidget(self.label_3, 2, 0, 1, 1)
    self.buttonBox = QtGui.QDialogButtonBox(self.gridLayoutWidget)
    self.buttonBox.setOrientation(QtCore.Qt.Horizontal)
    self.buttonBox.setStandardButtons \
      (QtGui.QDialogButtonBox.Cancel|QtGui.QDialogButtonBox.Ok)
    self.buttonBox.setObjectName("buttonBox")
    self.gridLayout.addWidget(self.buttonBox, 2, 1, 1, 1)

    self.retranslateUi(Dialog)
    QtCore.QObject.connect(self.buttonBox, \
      QtCore.SIGNAL("accepted()"), self.makeSomething)
    QtCore.QObject.connect(self.buttonBox, \
      QtCore.SIGNAL("rejected()"), self.makeNothing)
    QtCore.QMetaObject.connectSlotsByName(Dialog)

  def retranslateUi(self, Dialog):
    Dialog.setWindowTitle(QtGui.QApplication.translate \
      ("Dialog", "Geodesic Dome Creator",  \
      None, QtGui.QApplication.UnicodeUTF8))
    self.label.setText(QtGui.QApplication.translate \
      ("Dialog", "Dome Radius", None, QtGui.QApplication.UnicodeUTF8))
    self.label_2.setText(QtGui.QApplication.translate \
      ("Dialog", "Frequency Parameter\n(Integer between 1 to 10)", \
      None,QtGui.QApplication.UnicodeUTF8))
    self.label_3.setText(QtGui.QApplication.translate \
      ("Dialog", "This Macro creates \na full geodesic dome shell.\nX-Y-symmetry plane \nfor even frequencies", \
      None, QtGui.QApplication.UnicodeUTF8))

  def makeSomething(self):
    print "accepted! Dome radius: ", self.lineEdit.property("text"), \
      " with Frequency: ", int(self.lineEdit_2.text())

    doc=App.activeDocument()
    label = "GeodesicDome"

    theDome = doc.addObject("Part::Feature",label)
    radius = self.lineEdit.property("text")
    frequency = int(self.lineEdit_2.text())
      
    self.dia.close()
    self.makeDome(theDome, radius, frequency)
    doc.recompute()
    
    
  def makeNothing(self):
    print "rejected!!"
    self.dia.close()
    


  def makeDome(self, obj, domeRad_str, ny):
    
    def makeFreqFaces(fPt, sPt, thPt, ny = 1):
      # makes the geodesic dome faces out of the points of an
      # icosahedron triangle
      b = self.a/ny # length of frequent triangles
      # definition of direction vectors
      growVec = (sPt - fPt)
      # growVec = (fPt - sPt)
      growVec.multiply(1.0/ny)
      crossVec = (thPt - sPt)
      # crossVec = (sPt - thPt)
      crossVec.multiply(1.0/ny)
      
      for k in range(ny):
        kThirdPt = fPt + growVec * (k+0.0)
        dThirdPt = Base.Vector(kThirdPt.x, kThirdPt.y, kThirdPt.z)
        dThirdPt = dThirdPt.normalize().multiply(domeRad.Value)
        kSecPt = fPt + growVec * (k+1.0)
        dSecPt = Base.Vector(kSecPt.x, kSecPt.y, kSecPt.z)
        dSecPt = dSecPt.normalize().multiply(domeRad.Value)
        # thirdEdge = Part.makeLine(kSecPt, kThirdPt)
        # thirdEdge = Part.makeLine(dSecPt, dThirdPt)
        for l in range(k+1):
          firstPt = kSecPt + crossVec *(l+1.0)
          dFirstPt = firstPt.normalize().multiply(domeRad.Value)
          secPt = kSecPt + crossVec *(l+0.0)
          dSecPt =secPt.normalize().multiply(domeRad.Value)
          thirdPt = kThirdPt + crossVec *(l+0.0)
          dThirdPt = thirdPt.normalize().multiply(domeRad.Value)
          #thirdEdge = Part.makeLine(secPt, thirdPt)
          thirdEdge = Part.makeLine(dSecPt, dThirdPt)
          # Part.show(thirdEdge)
          if l > 0:
            print "in l: ", l, " mod 2: ", l%2
            # What to do here?
            #secEdge = Part.makeLine(oThirdPt,thirdPt)
            secEdge = Part.makeLine(doThirdPt,dThirdPt)
            # Part.show(secEdge)
            #thirdEdge = Part.makeLine(secPt, thirdPt)
            #thirdEdge = Part.makeLine(dSecPt, dThirdPt)
            # Part.show(thirdEdge)
            triWire = Part.Wire([firstEdge, secEdge, thirdEdge])
            # Part.show(triWire)
            triFace = Part.Face(triWire)
            self.domeFaces.append(triFace)
            #Part.show(triFace)
          
          oThirdPt = thirdPt
          doThirdPt = oThirdPt.normalize().multiply(domeRad.Value)
          # oFirstPt = firstPt
          #firstEdge = Part.makeLine(thirdPt,firstPt)
          firstEdge = Part.makeLine(dThirdPt,dFirstPt)
          oFirstEdge = firstEdge
          #secEdge = Part.makeLine(firstPt,secPt)
          secEdge = Part.makeLine(dFirstPt,dSecPt)
          #Part.show(firstEdge)
          #Part.show(secEdge)
          #Part.show(thirdEdge)
          triWire = Part.Wire([firstEdge, secEdge, thirdEdge])
          triFace = Part.Face(triWire)
          self.domeFaces.append(triFace)
          #Part.show(triFace)
    
    
    domeRad = FreeCAD.Units.Quantity(domeRad_str)
  
    # self.a = Strutlength of underlying icosahedron:
    self.a=(4.0*domeRad.Value)/math.sqrt(2.0*math.sqrt(5.0)+10.0) 
    
    # icoAngle: angle of vertices of icosahedron points 
    # not a north or south pole
    self.icoAngle = math.atan(0.5)
    
    self.icoLat = domeRad.Value * math.sin(self.icoAngle)
    self.latRad = domeRad.Value * math.cos(self.icoAngle)
    self.ang36 = math.radians(36.0)
    
    # Calculation all points of the icosahedron
    self.icoPts = []
    self.icoPts.append(Base.Vector(0.0, 0.0, domeRad.Value))
    
    for i in range(10):
      self.icoCos = self.latRad * math.cos(i*self.ang36)
      self.icoSin = self.latRad * math.sin(i*self.ang36)
      if i%2 == 0:
        self.icoPts.append(Base.Vector(self.icoSin, self.icoCos, self.icoLat))
      else:
        self.icoPts.append(Base.Vector(self.icoSin, self.icoCos, -self.icoLat))
    
    self.icoPts.append(Base.Vector(0.0, 0.0, -domeRad.Value))
    
    # making the faces of the icosahedron
    
    self.icoFaces = [] # collects faces of the underlying icosahedron
    self.domeFaces = [] # collects the faces of the geodesic dome
    
    thirdPt = self.icoPts[9]
    thirdEdge = Part.makeLine(self.icoPts[0],thirdPt)
    for i in range(5):
      j = i*2+1
      firstEdge = Part.makeLine(thirdPt,self.icoPts[j])
      secEdge = Part.makeLine(self.icoPts[j],self.icoPts[0])
      triWire = Part.Wire([firstEdge, secEdge, thirdEdge])
      triFace = Part.Face(triWire)
      self.icoFaces.append(triFace)
      # Part.show(triFace)
      makeFreqFaces(self.icoPts[j], self.icoPts[0], thirdPt, ny)
      
      thirdEdge = Part.makeLine(self.icoPts[0],self.icoPts[j])
      thirdPt = self.icoPts[j]
      
    thirdPt = self.icoPts[9]
    secPt = self.icoPts[10]
    thirdEdge = Part.makeLine(secPt,thirdPt)
    
    for i in range(10):
      j = i+1
      firstEdge = Part.makeLine(thirdPt,self.icoPts[j])
      secEdge = Part.makeLine(self.icoPts[j],secPt)
      triWire = Part.Wire([firstEdge, secEdge, thirdEdge])
      triFace = Part.Face(triWire)
      self.icoFaces.append(triFace)
      #Part.show(triFace)
      makeFreqFaces(self.icoPts[j], secPt, thirdPt, ny)
    
      thirdPt = secPt  
      secPt = self.icoPts[j]  
      thirdEdge = Part.makeLine(secPt,thirdPt)
    
    
    thirdPt = self.icoPts[10]
    thirdEdge = Part.makeLine(self.icoPts[11],thirdPt)
    for i in range(5):
      j = i*2+2
      firstEdge = Part.makeLine(thirdPt,self.icoPts[j])
      secEdge = Part.makeLine(self.icoPts[j],self.icoPts[11])
      triWire = Part.Wire([firstEdge, secEdge, thirdEdge])
      triFace = Part.Face(triWire)
      self.icoFaces.append(triFace)
      #Part.show(triFace)
      makeFreqFaces(self.icoPts[j], self.icoPts[11], thirdPt, ny)
      
      thirdEdge = Part.makeLine(self.icoPts[11],self.icoPts[j])
      thirdPt = self.icoPts[j]
    
    # Shell of a corresponding icosahedron  
    newShell = Part.Shell(self.icoFaces)
    #Part.show(newShell)
    
    # Shell of the geodesic dome
    #self.domeShell = Part.Shell(self.domeFaces)
    #Part.show(self.domeShell)
    obj.Shape = Part.Shell(self.domeFaces)
    
    # Shere with radius of geodesic dome for debugging purposes
    testSphere = Part.makeSphere(domeRad.Value)
    #Part.show(testSphere)
  

d = QtGui.QWidget()
d.ui = Ui_Dialog()
d.ui.setupUi(d)
d.ui.lineEdit_2.setText("2")
d.ui.lineEdit.setProperty("text", "2 m")

d.show()

Get the code from Github here!

Other languages: