Introduzione a Python

From FreeCAD Documentation
Revision as of 20:03, 8 October 2014 by Renatorivo (talk | contribs) (Created page with "o recuperare un elemento da una lista:")

Questo è una breve guida realizzata per chi si avvicina per la prima volta a Python.

Python è un linguaggio di programmazione multipiattaforma open-source.

Python dispone di numerose funzionalità che lo rendono molto diverso dagli altri comuni linguaggi di programmazione, ed è facilmente accessibile ai nuovi utenti:

  • È stato progettato appositamente per essere letto facilmente dalle persone, quindi è molto facile da imparare e da capire.
  • È interpretato, ciò significa che, a differenza dei linguaggi compilati come il C, non è necessario compilare il programma prima di poterlo eseguire. Quando si desidera, il codice che si scrive può essere eseguito immediatamente, riga dopo riga. Siccome si procede gradualmente, passo dopo passo, è facile impararlo e trovare gli eventuali errori nel codice.
  • Può essere incorporato in altri programmi per essere usato come linguaggio di script. FreeCAD ha un interprete Python integrato, così, in FreeCAD, è possibile scrivere dei codici Python che manipolano parti di FreeCAD, ad esempio per creare la geometria. Questo è estremamente performante, perché invece di premere semplicemente un pulsante denominato "Crea sfera", che un programmatore ha messo a disposizione, si ha la libertà di creare facilmente dei propri strumenti per produrre una particolare geometria desiderata.
  • È estensibile. Si possono inserire facilmente dei nuovi moduli nella propria installazione di Python ed estenderne le funzionalità. Ad esempio, esistono moduli Python che permettono di leggere e scrivere le immagini jpg, di comunicare con Twitter, di programmare le operazioni del proprio sistema operativo, ecc.

Ora, mettiamoci al lavoro! Ricordare che ciò che verrà dopo è solamente una semplice introduzione e non un tutorial completo. Ma la speranza è che dopo si avranno basi sufficienti per esplorare più in profondità i meccanismi di FreeCAD.

L'interprete

Di solito, per scrivere programmi per computer, basta aprire un editor di testo (o l'ambiente di programmazione preferito che, in genere, è un editor di testo con strumenti aggiuntivi), scrivere il programma, quindi compilarlo ed eseguirlo. Il più delle volte si fanno degli errori di scrittura, per cui il programma non funziona, e si ottiene un messaggio di errore che dà informazioni su cosa è andato storto. Quindi si ritorna all'editor di testo, si correggono gli errori, si esegue di nuovo, e così via fino a quando il programma funziona bene.

In Python, l'intero processo, può essere eseguito in modo trasparente all'interno del suo interprete. L'interprete Python è una finestra con un prompt dei comandi, dove si può digitare direttamente il codice Python. Se si installa Python sul ​​proprio computer (scaricarlo dal sito web di Python se lavorate su Windows o Mac, installarlo dal repository dei pacchetti se utilizzate GNU/Linux), si avrà un interprete Python nel menu di avvio. FreeCAD dispone di un proprio interprete Python visualizzato nella sua parte inferiore:

Se non è visibile, cliccare su Visualizza → Viste → Console Python.

L'interprete mostra la versione di Python, quindi il simbolo >>>, che è il suo prompt dei comandi, cioè, dove si deve inserire il codice Python. Scrivere il codice nell'interprete è semplice: ogni riga è una istruzione. Quando si preme Invio, la riga di codice viene eseguita (dopo essere stata istantaneamente e invisibilmente compilata). Ad esempio, provare a scrivere questo:

 print "hello"

per Python print è una speciale parola chiave che, ovviamente, serve per stampare qualcosa sullo schermo. Quando si preme Invio, l'operazione viene eseguita, e viene stampato il messaggio "ciao". Se si commette un errore, provare, per esempio, a scrivere:

 print hello

Python dice che non conosce ciao. I caratteri " " specificano che il contenuto è una stringa. In gergo tecnico, una stringa è semplicemente un pezzo di testo. Senza i segni ", la parola ciao viene vista come una specificazione del comando di stampa, cioè come una speciale parola chiave di Python, e non come un testo. Il fatto importante è che l'errore viene immediatamente notificato. Premendo la freccia verso l'alto (o, nell'interprete di FreeCAD, CTRL + freccia su), si può tornare all'ultimo comando scritto e correggerlo.

L'interprete Python possiede anche un sistema di aiuto incorporato. Provare a digitare:

 help

oppure, ad esempio, se non si riesce a capire cosa è andato storto con il precedente comando print ciao, e si desiderano delle informazioni specifiche sul comando "print" digitare:

 help("print")

Si ottiene una lunga e completa descrizione di tutto quello che può fare il comando print.

Ora che si ha il controllo totale dell'interprete, si può cominciare con le cose significative.

Variabili

Naturalmente, stampare "ciao" non è molto interessante. Più interessante è stampare cose che non si conoscono prima, o lasciare che Python le trovi per noi. Quì entra in gioco il concetto di variabile. Una variabile è semplicemente un valore che viene memorizzato con un nome specifico. Ad esempio, digitare questo:

 a = "hello"
 print a

Sicuramente si capisce quello che succede, la stringa "ciao" viene "salvata" sotto il nome "a". Ora, a non è più un nome sconosciuto! Si può usare ovunque, per esempio nel comando print. È possibile utilizzare qualsiasi nome che si desideri, basta rispettare delle semplici regole, tipo non usare spazi o segni di punteggiatura. Ad esempio, si potrebbe tranquillamente scrivere:

 hello = "my own version of hello"
 print hello

Visto? ciao ora non è più una parola indefinita. E se, per sfortuna, si sceglie un nome che in Python esiste già? Supponiamo di voler conservare una stringa con il nome "print":

 print = "hello"

Python è molto intelligente e ci dice che questo non è possibile. Possiede alcune parole chiave "riservate" che non possono essere modificate. Invece le nostre variabili possono essere modificate in qualsiasi momento, il che è esattamente il motivo per cui sono chiamate variabili, ovvero il contenuto può variare. Ad esempio:

 myVariable = "hello"
 print myVariable
 myVariable = "good bye"
 print myVariable

Il valore di myVariable è stato cambiato. Le variabili possono anche essere copiate:

 var1 = "hello"
 var2 = var1
 print var2

Notare che è utile dare alle variabili dei nomi descrittivi. Quando si scrivono programmi lunghi, dopo un po' probabilmente non si ricorda più cosa rappresenta la variabile denominata "a". Se invece viene chiamata, ad esempio, MioMessaggioDiBenvenuto, quando la si vede, si capisce facilmente a cosa serve.

Numeri

È noto che la programmazione serve per trattare ogni tipo di dati, non solo le stringhe di testo, ma soprattutto i numeri. È molto importante che Python sappia che tipo di dati deve trattare. Nell'esempio precedente, con print ciao, si è visto che il comando print ha riconosciuto la nostra stringa "ciao". Questo perché utilizzando il segno ", abbiamo specificato al comando print che ciò che seguiva era una stringa di testo.

Per controllare in qualsiasi momento di quale tipo sono i dati contenuti in una variabile si utilizza la speciale parola chiave di Python type():

 myVar = "hello"
 type(myVar)

In questo caso ci dice che il contenuto di myVar è 'str', ovvero una stringa in gergo Python. Ci sono anche altri tipi di dati, ad esempio i numeri interi (integer) e i numeri in virgola mobile (float numbers):

 firstNumber = 10
 secondNumber = 20
 print firstNumber + secondNumber
 type(firstNumber)

Questo è già molto più interessante, vero? Ora si dispone di una potente calcolatrice! Notare bene come funziona. Python capisce che 10 e 20 sono numeri interi, quindi vengono memorizzati come "int", e con essi Python può fare tutte le operazioni consentite con numeri interi. Osservare i risultati di questo codice:

 firstNumber = "10"
 secondNumber = "20"
 print firstNumber + secondNumber

Visto? Python è stato indotto a considerare le due variabili non più come numeri, ma come semplici parti di testo. Python può unire insieme due parti di testo, ma con esse non cerca di produrre una somma. Torniamo ai numeri. Oltre ai numeri interi (int) ci sono anche i numeri in virgola mobile (float). I numeri interi non hanno una parte decimale, mentre i numeri float possono avere una parte decimale:

 var1 = 13
 var2 = 15.65
 print "var1 is of type ", type(var1)
 print "var2 is of type ", type(var2)

I numeri Int e Float possono essere mescolati tra di loro senza problemi:

 total = var1 + var2
 print total
 print type(total)

Naturalmente il totale ha dei decimali, vero? Quindi Python ha deciso automaticamente che il risultato è un float. In molti casi, come in questo, Python decide automaticamente il tipo da assegnare al risultato. In altri casi no. Ad esempio con:

 varA = "hello 123"
 varB = 456
 print varA + varB

Si produce un errore, varA è una stringa e varB è un int, quindi Python non sa cosa fare. Ma possiamo indurre Python a convertire i tipi:

 varA = "hello"
 varB = 123
 print varA + str(varB)

Ora entrambi sono stringhe, e l'operazione funziona! Notare che, con questi comandi, varB è convertita in "stringa" solo al momento della stampa, però varB originale non viene modificata. Per trasformare varB permanentemente in una stringa, si deve fare:

 varB = str(varB)

Inoltre è possibile usare int() e float() per convertire in int e in float:

 varA = "123"
 print int(varA)
 print float(varA)

Note sui comandi Python

Sicuramente avete notato che in questa sezione il comando di stampa (print) è stato utilizzato in diversi modi. Abbiamo stampato variabili, somme, parti separati da virgole, e anche il risultato di altri comandi Python, ad esempio type(). Forse avete anche notato che questi due comandi:

 type(varA)
 print type(varA)

producono esattamente lo stesso risultato. Questo succede perché siamo nell'interprete, dove ogni cosa viene sempre automaticamente stampata sullo schermo. Per velocizzare, d'ora in avanti si può fare a meno di usarlo e quindi scrivere semplicemente:

 myVar = "hello friends"
 myVar

Inoltre avrete notato che con la maggior parte dei comandi (o parole chiave) di Python si usano le parentesi per dire loro su quale contenuto devono operare: type(), int(), str(), ecc. Unica eccezione è il comando print, ma in realtà non si tratta di un'eccezione, anche lui funziona normalmente in questo modo:

print ("ciao")

però, siccome viene utilizzato frequentemente, i programmatori di Python ne hanno creato una versione semplificata.

Liste

Un altro tipo di dati interessante è list (lista). Una lista è semplicemente un elenco di altri dati. In modo analogo a come si definisce una stringa di testo usando " ", una lista si definisce usando []:

 myList = [1,2,3]
 type(myList)
 myOtherList = ["Bart", "Frank", "Bob"]
 myMixedList = ["hello", 345, 34.567]

Come si vede, una lista può contenere dati di qualsiasi tipo. Le liste sono molto utili perché permettono di raggruppare le variabili. Con il gruppo, successivamente, è possibile fare diverse cose, ad esempio contare i suoi componenti:

 len(myOtherList)

o recuperare un elemento da una lista:

 myName = myOtherList[0]
 myFriendsName = myOtherList[1]

You see that while the len() command returns the total number of items in a list, their "position" in the list begins with 0. The first item in a list is always at position 0, so in our myOtherList, "Bob" will be at position 2. We can do much more stuff with lists such as you can read here, such as sorting contents, removing or adding elements.

A funny and interesting thing for you: a text string is very similar to a list of characters! Try doing this:

 myvar = "hello"
 len(myvar)
 myvar[2]

Usually all you can do with lists can also be done with strings. In fact both lists and strings are sequences.

Outside strings, ints, floats and lists, there are more built-in data types, such as dictionnaries, or you can even create your own data types with classes.

Indentation

One big cool use of lists is also browsing through them and do something with each item. For example look at this:

 alldaltons = ["Joe", "William", "Jack", "Averell"]
 for dalton in alldaltons:
    print dalton + " Dalton"

We iterated (programming jargon again!) through our list with the "for ... in ..." command and did something with each of the items. Note the special syntax: the for command terminates with : which indicates that what will comes after will be a block of one of more commands. Immediately after you enter the command line ending with :, the command prompt will change to ... which means Python knows that a :-ended line has happened and that what will come next will be part of it.

How will Python know how many of the next lines will be to be executed inside the for...in operation? For that, Python uses indentation. That is, your next lines won't begin immediately. You will begin them with a blank space, or several blank spaces, or a tab, or several tabs. Other programming languages use other methods, like putting everythin inside parenthesis, etc. As long as you write your next lines with the same indentation, they will be considered part of the for-in block. If you begin one line with 2 spaces and the next one with 4, there will be an error. When you finished, just write another line without indentation, or simply press Enter to come back from the for-in block

Indentation is cool because if you make big ones (for example use tabs instead of spaces because it's larger), when you write a big program you'll have a clear view of what is executed inside what. We'll see that many other commands than for-in can have indented blocks of code too.

For-in commands can be used for many things that must be done more than once. It can for example be combined with the range() command:

 serie = range(1,11)
 total = 0
 print "sum"
 for number in serie:
    print number
    total = total + number
 print "----"
 print total

Or more complex things like this:

 alldaltons = ["Joe", "William", "Jack", "Averell"]
 for n in range(4):
    print alldaltons[n], " is Dalton number ", n

You see that the range() command also has that strange particularity that it begins with 0 (if you don't specify the starting number) and that its last number will be one less than the ending number you specify. That is, of course, so it works well with other Python commands. For example:

 alldaltons = ["Joe", "William", "Jack", "Averell"]
 total = len(alldaltons)
 for n in range(total):
    print alldaltons[n]

Another interesting use of indented blocks is with the if command. If executes a code block only if a certain condition is met, for example:

 alldaltons = ["Joe", "William", "Jack", "Averell"]
 if "Joe" in alldaltons:
    print "We found that Dalton!!!"

Of course this will always print the first sentence, but try replacing the second line by:

 if "Lucky" in alldaltons:

Then nothing is printed. We can also specify an else: statement:

 alldaltons = ["Joe", "William", "Jack", "Averell"]
 if "Lucky" in alldaltons:
    print "We found that Dalton!!!"
 else:
    print "Such Dalton doesn't exist!"

Functions

The standard Python commands are not many. In current version of Python there are about 30, and we already know several of them. But imagine if we could invent our own commands? Well, we can, and it's extremely easy. In fact, most the additional modules that you can plug into your Python installation do just that, they add commands that you can use. A custom command in Python is called a function and is made like this:

 def printsqm(myValue):
    print str(myValue)+" square meters"
 
 printsqm(45)

Extremely simple: the def() command defines a new function. You give it a name, and inside the parenthesis you define arguments that we'll use in our function. Arguments are data that will be passed to the function. For example, look at the len() command. If you just write len() alone, Python will tell you it needs an argument. That is, you want len() of something, right? Then, for example, you'll write len(myList) and you'll get the length of myList. Well, myList is an argument that you pass to the len() function. The len() function is defined in such a way that it knows what to do with what is passed to it. Same as we did here.

The "myValue" name can be anything, and it will be used only inside the function. It is just a name you give to the argument so you can do something with it, but it also serves so the function knows how many arguments to expect. For example, if you do this:

 printsqm(45,34)

There will be an error. Our function was programmed to receive just one argument, but it received two, 45 and 34. We could instead do something like this:

 def sum(val1,val2):
    total = val1 + val2
    return total

 sum(45,34)
 myTotal = sum(45,34)

We made a function that receives two arguments, sums them, and returns that value. Returning something is very useful, because we can do something with the result, such as store it in the myTotal variable. Of course, since we are in the interpreter and everything is printed, doing:

 sum(45,34)

will print the result on the screen, but outside the interpreter, since there is no more print command inside the function, nothing would appear on the screen. You would need to do:

 print sum(45,34)

to have something printed. Read more about functions here.

Modules

Now that we have a good idea of how Python works, we'll need one last thing: How to work with files and modules.

Until now, we wrote Python instructions line by line in the interpreter, right? What if we could write several lines together, and have them executed all at once? It would certainly be handier for doing more complex things. And we could save our work too. Well, that too, is extremely easy. Simply open a text editor (such as the windows notepad), and write all your Python lines, the same way as you write them in the interpreter, with indentations, etc. Then, save that file somewhere, preferably with a .py extension. That's it, you have a complete Python program. Of course, there are much better editors than notepad, but it is just to show you that a Python program is nothing else than a text file.

To make Python execute that program, there are hundreds of ways. In windows, simply right-click your file, open it with Python, and execute it. But you can also execute it from the Python interpreter itself. For this, the interpreter must know where your .py program is. In FreeCAD, the easiest way is to place your program in a place that FreeCAD's Python interpreter knows by default, such as FreeCAD's bin folder, or any of the Mod folders. Suppose we write a file like this:

def sum(a,b):
    return a + b

print "test.py succesfully loaded"

and we save it as test.py in our FreeCAD/bin directory. Now, let's start FreeCAD, and in the interpreter window, write:

 import test

without the .py extension. This will simply execute the contents of the file, line by line, just as if we had written it in the interpreter. The sum function will be created, and the message will be printed. There is one big difference: the import command is made not only to execute programs written in files, like ours, but also to load the functions inside, so they become available in the interpreter. Files containing functions, like ours, are called modules.

Normally when we write a sum() function in the interpreter, we execute it simply like that:

 sum(14,45)

Like we did earlier. When we import a module containing our sum() function, the syntax is a bit different. We do:

 test.sum(14,45)

That is, the module is imported as a "container", and all its functions are inside. This is extremely useful, because we can import a lot of modules, and keep everything well organized. So, basically, everywhere you see something.somethingElse, with a dot in between, that means somethingElse is inside something.

We can also throw out the test part, and import our sum() function directly into the main interpreter space, like this:

 from test import *
 sum(12,54)

Basically all modules behave like that. You import a module, then you can use its functions like that: module.function(argument). Almost all modules do that: they define functions, new data types and classes that you can use in the interpreter or in your own Python modules, because nothing prevents you to import modules inside your module!

One last extremely useful thing. How do we know what modules we have, what functions are inside and how to use them (that is, what kind of arguments they need)? We saw already that Python has a help() function. Doing:

 help()
 modules

Will give us a list of all available modules. We can now type q to get out of the interactive help, and import any of them. We can even browse their content with the dir() command

 import math
 dir(math)

We'll see all the functions contained in the math module, as well as strange stuff named __doc__, __file__, __name__. The __doc__ is extremely useful, it is a documentation text. Every function of (well-made) modules has a __doc__ that explains how to use it. For example, we see that there is a sin function in side the math module. Want to know how to use it?

 print math.sin.__doc__

And finally one last little goodie: When we work on programming a new module, we often want to test it. So once we wrote a little piece of module, in a python interpreter, we do something like this, to test our new code:

 import myModule
 myModule.myTestFunction()

But what if we see that myTestFunction() doesn't work correctly? We go back to our editor and modifiy it. Then, instead of closing and reopening the python interpreter, we can simply update the module like this:

 reload(myModule)

Starting with FreeCAD

Well, I think you must know have a good idea of how Python works, and you can start exploring what FreeCAD has to offer. FreeCAD's Python functions are all well organized in different modules. Some of them are already loaded (imported) when you start FreeCAD. So, just do

 dir()

and read on to FreeCAD Scripting Basics...

Of course, we saw here only a very small part of the Python world. There are many important concepts that we didn't mention here. There are three very important Python reference documents on the net:

Be sure to bookmark them!


Macros
Python scripting tutorial